The Comparative Effect of Input Flooding vs. Visual Input Enhancement on Learning Causative Structures

Shahram Afraz 1, Sharareh Ebrahimi 2*

1. Dept. of English Language, Qeshm Branch, Islamic Azad University, Qeshm, Iran.
2. Ph.D. Student in TEFL, Dept. of English Language, Qeshm Branch, Islamic Azad University, Qeshm, Iran.
* Corresponding Author’s Email: eb_sharareh@yahoo.com

Abstract – Causative structures help speakers produce more connected and coherent speech through linking the actions and the doers of actions and learning causative structures pose challenges for EFL learners. The current study attempted to explore the effects of input enhancement and input flooding on learning causative structures by Iranian EFL learners. The participants of the study were 97 male and female students at the intermediate level of language proficiency within the age range of 18 to 33. The study adopted a pretest and posttest with two experimental and a control group design. The data were analyzed using the statistical method of ANCOVA. The results of statistical analysis showed that input enhancement and input flooding were both effective on learning causative structures by Iranian EFL learners. In addition, it was demonstrated that input enhancement and input flooding had equal effect on learning causative structures and no significant difference was found between the effects of either of them on the causative structure test scores.

Keywords: input, input enhancement, visual input, input flooding, causative structures

1. INTRODUCTION

A look at the literature shows that during the last few decades, scholars in the context of second language acquisition have focused on the contribution of input to language learning. Along the same lines, many studies have been conducted in this respect (e.g., Fahim, & Vaezi, 2011; Farahany, 2015; Goudarzi, & Moini, 2012; Hassani, Azarnoosh, & Naeini, 2015; Loewen, & Inceoglu, 2016; Rashtchi, & Gharanli, 2010; Mayen, 2013; Seyedtajaddini, 2014). These investigations have mainly sought to examine the impact of input modifications on learning different language skills and components. According to Krashen (1982), the successful language learning requires being exposed to comprehensible input. Krashen (1985) maintains that the main purpose of SLA is to pave the way for learners’ exposure to comprehensible input. Furthermore, Chaudron (1985) asserts that language learning processes do not happen as long as language input is not comprehensible to the learners. There are many techniques which can be used to render the input comprehensible to the learners. Two of the most notable techniques are input enhancement and input flooding (Kim, cited in Bahrani, 2012).

Input enhancement, which is considered as an instruction technique, is widely used in second language (L2) acquisition. It is amid at assisting L2 learners in focusing on various
components of language including its vocabulary and grammatical morphemes as well as structures (Sharwood Smith, 1991). Sharwood Smith asserts that drawing L2 learners’ attention to grammatical points and lexical aspects may not be in line with their natural tendency to consider L2 meaning without taking account of structure (Smith, 1993).

Besides, input flooding is concerned with raising the number of times that learners face a word or a grammatical structure in a particular text (Schmitt, 2002), aiming to help the L2 learners notice the structure in question. Should the input change into uptake, the condition of noticing should be met. Similarly, Schmidt (1995) maintains that noticing entails an individual’ attention to how an event occurs, followed by its storage in the memory. The acquisition of a new language requires the individual to pay attention and notice those language features that are associated with the L2 system.

Causative structures are considered as one of the challenging issues on the path to learning a second language. A causative form is defined as an expression of an agent making a subject conduct an action or be in a certain condition. This is a salient cause. It also involves an expression of a subject involved in a non-volitional event that registers the changes of its state, salient effect. English language uses the causative verb as one of its common structure. It indicates that somebody or something is indirectly involved in an action. According to Pinker (1989), the subject does not carry out the action itself, but causes someone or something else to do it instead.

2. LITERATURE REVIEW

2.1. Input Enhancement

Drawing L2 learners’ attention to the intended language forms in meaning- and communication-oriented situations is needed to assist learners in noticing the gap between their present inter-language and the target language. Based on Schmidt’s (1994) Noticing Hypothesis, noticing is concerned with L2 highlights in the written or spoken input to which L2 learners come to know by reading or listening. It is considered as a required and adequate condition for changing input into intake. The presentation of pedagogical procedures in such a way that draws L2 learners’ attention to the formal elements in the L2 information is called consciousness-raising (Sharwood Smith, 1981) or alternatively as input enhancement (Sharwood Smith, 1991, 1993) in the related literature. Visual input enhancement is a subclass of input enhancement. As the most extensively used technique in visual input enhancement, it improves the perceptual salience of the target forms or vocabulary items through combining various techniques used in formatting(e.g., bolding, capitalizing, or underlining, coloring the font) and in some cases these might be followed by explicit teaching especially in case of grammar (Han, Park & Combs, 2008).

A study conducted by Fahim and Vaezi (2011) investigated how much visual/textual input-based enhancement can enhance EFL learners’ verb-noun lexical collocations learning. This study used a sample consisting of ninety-six intermediate learners who were selected from language institutes. They were randomly divided into 3 groups. Then, all participants in the groups took a pre-test. Afterwards, all groups participated in ten sessions, being exposed to the same set of 10 reading passages. The treatment unfolded as follows: the participants
in experimental group 1 were given reading passages consisting of the collocations bolded or CAPITALIZED. The participants in experimental group 2 underwent a conventional-based treatment. In the case of the participants in the control group, they were exposed to no instruction. Put it other way, they were provided with no specific instructions. Finally, the participants in all three groups took part in a post-test. The results indicated that visually/textually enhanced input along with conventional instruction significantly influenced learning the intended items. Moreover, visual/textual input-based enhancement was shown to be as helpful as conventional method of instruction.

Mayen (2013) studied the effect of visual prompts as an instance of input enhancement techniques on L2 learners' acquisition of Spanish verbal morphology. This 14-week study used two experimental groups, which consisted of L2 Spanish young learners ranging in age from 7 to 9 years old. These students were provided with various input enhancement techniques, focusing on Spanish verbal morphology. Following the completion of this treatment, the participants carried out five different tasks (reading, fill in the blanks, writing, structured oral interview and oral translation). The collected data on these tasks were assessed and compared with those in the control group. The results of the study showed that using input enhancement techniques via visual aids can help L2 learners to notice and remember the verbal morphology.

A study carried out by Farahany (2015) investigated the possible impact of visual input enhancement and global/analytic learning styles on learning the English article among L2 learners. The study made use of a factorial pretest-posttest control group design. The researcher invited forty students to take part in this study. They were sophomore and junior students, studying English Literature and Translation at a University in Iran. To make sure that all participants were homogeneous with respect to general English proficiency, all students took a Quick Placement Test (QPT). Then, they were randomly divided into two groups, namely, experimental and control. To know about the students’ learning styles, a Learning Styles Preference Indicator designed by Pitts (2009) was administered. Then, all students took part in a pretest in order to assess their knowledge of the targeted feature. Afterwards, a treatment was implemented, followed by the administration of a posttest. Based on the statistical results of ANOVAs, the study showed no significant effect for visual input enhancement and learning styles.

2.2. Input Flooding

It goes without saying that input plays an important role in language acquisition. Despite the presentation of various views concerning how to expose the learners to input in the best way, they all share the assertion on the significance of input in L2 acquisition (Nassaji & Fotos, 2011). As a process, input processing (IP) is employed by L2 learners to make a connection between grammatical forms and their meanings or functions. Put it other way, IP seeks to account for how learners attempt to absorb grammatical forms while focusing on meaning at the same time (Van Patten, cited in Nassaji & Fotos, 2011). Input flooding is described as one of the variants of input modification which is in keeping with input processing and it has been defined as follows: L2 instructors give multiple instances of an intended target form in the input to the learners (either oral or written). It is claimed that
frequent instances of the same target input highlights it perceptually, drawing the learners’ attention to different aspects of input.

Input flooding is claimed to have a facilitative role in building comprehensible input through exposing learners to either highlighted or frequent examples of input. In an investigation carried out by Biria and Sedaghat (2014), following the completion of the treatment, i.e. exposing three groups of intermediate EFL learners to enhanced forms of input in three different ways, the researchers concluded that either of these forms make important contribution to the long-term retention of grammatical structures. However, the third group outperformed the other two by far.

Some researchers (e.g., Krashen, 1985; Nemati & Motallebzadeh, 2013; Sokmen, 1997; Trahey & White, 1993) elaborate on the efficacy of input flooding and its benefits for L2 learning. Focusing on the impact of input flooding on recalling L2 language vocabulary items in the ESL learners’ mind, Hedge (2000) suggests that input flooding renders learning stable and forgetting least probable. Based on Krashen’s (1985) words, rich comprehensible input and input flood are major preconditions for learning a second language.

2.3. Causative Structures

Many studies have focused on English periphrastic causative constructions, namely, constructions in which a causative verb like "make" or "get" has a controlling force over a non-finite complement clause (e.g., Abbasi Bagherianpoor, Hosseini, & Rohani, 2015; Altunkol, 2013; Anyanwu, 2012; Hemmings, 2013; Zibin, & Altakhaineh, 2016). A variety of theoretical frameworks (e.g. generative grammar proposed by Kastovsky, 1973, the universal-typological theory proposed by Wierzbicka, 1998, and cognitive linguistics developed by Hollmann, 2006 and construction grammar introduced by Stefanowitsch and Gries in 2003) has been put forward to clarify the concept of causative structures. Majority of these studies have dealt with the way in which periphrastic causative constructions are employed (or should be employed) by English native speakers. Therefore, fewer investigations have focused on the use of these constructions by English non-native speakers (Zibin, & Altakhaineh, 2016). The grammar of causative constructions has long been in focus in the recent linguistic literature. This is mainly due to the complexities of causatives both within particular languages and cross-linguistically (Kemmer & Ferhagen, 1994). Given the important role of input and the fact that causative structures pose challenges for EFL learners, the present study sought to investigate the effect of input flooding and visual input enhancement on learning causative structures by Iranian intermediate EFL learners.

2.4. Research Questions

In line with the purposes of the present study, the following research questions were formulated:

Q1. Does input flooding have any significant effect on learning causative structures by Iranian intermediate EFL learners?

Q2. Does visual input enhancement have any significant effect on learning causative structures by Iranian intermediate EFL learners?
Q3. Is there any significant difference between the effects of input flooding and visual input enhancement on learning causative structures by Iranian intermediate EFL learners?

3. METHOD

3.1. Participants

The participants of the study included 97 students at intermediate level of language proficiency from a private language institute in Tehran. They were sitting in their intact classes and were chosen based on their language proficiency, age range, and gender. Other demographic information was not readily available and no serious attempts were made to access that information due to policy of the institutes. In terms of age range they were considered young and in the age range of 18 to 33. Regarding gender of the participants, both genders were included and since the classes are not coed in Iran, it was tried to use intact classes. The participants were grouped into three groups of input enhancement for receiving enhanced input, input flooding group for being flooded with input, and control group. Totally there were 33 students in input enhancement group, 37 in input flooding group, and 27 in control group.

3.2. Instruments and Martials

Two main instruments were employed in the study; TOEFL and test of causative structures.

3.2.1. TOEFL

Two subsections of TOEFL were used to examine the language proficiency of the groups of participants. These sections were reading section including 50 items and structure and written expression section including 40 items. Each item had a weight of 1 point and accordingly the TOEFL used in the current study had a scaling of 0 to 90 for scoring the language proficiency of the participants.

3.2.2. Test of causative structures

In order to measure participants’ knowledge of causative structures, a test of causative structures was developed. The test contained 30 items, the validity of which was determined by seeking the appeal of experts in the field of ELT. These experts were English instructors with at least 10 years of teaching and held PhD in applied linguistics. The reliability of the test was established by piloting it on a group of 30 EFL learners with characteristics similar to the actual participants of the study. Reliability estimation was performed using Cronbach’s Alpha formula and estimation value was found 0.78 indicting acceptable internal consistency. This test served as both pretest and posttest for measuring the effect of treatments on the learning of causative structures by Iranian EFL learners.

3.2.3. Materials

The materials of the study were texts collected from variety of sources including English textbooks, English grammar books and pages from internet. The texts were chosen based on their causative structure content corresponding to the target structures in the test of causative structures and also difficulty level of the texts. The materials contained 20 texts,
half which were enhanced drawing on Norris and Ortega’s (2000) guidelines for textual input enhancement. The enhancement techniques consisted of underlining, boldfacing, italicization, and CAPITALIZATION. These textually enhanced materials were used in the input enhancement group. The original materials (20 texts) were used in the input flooding group for exposing the students with numerous instances of causative structure but with no enhancement of any types.

3.3. Procedure

The procedure for conducting the current study was pretty straightforward and can be summarized in 1) piloting instruments, 2) participants’ selection and pretesting, 3) treatment, and 4) post testing. In the piloting phase, test of causative structure was piloted for establishing the reliability of the test which was successful and reliability of the test was found 0.78. In the next phase, intermediate language learners were spotted in a private institute and were grouped for receiving treatments and acting as control group. The institute was intended to remain unknown but it needs to be admitted that the institute was quite popular among students and had good reputation for achievement and quality instruction. As explained in participants section of the current article, students were in their intake classes and grouping was done without disturbing their course schedule. The participants were grouped into three groups of input enhancement for receiving enhanced input, input flooding group for being flooded with input, and control group. They all took the TOEFL and test of causative structures for being tested for the homogeneity in terms of language proficiency and the recording of students’ knowledge of causative structures respectively. The results of TOEFL showed homogeneity of participants in terms of language proficiency. In the treatment phase of the study, input enhancement group was provided with textually enhanced materials while input flooding group was provided with much more materials to be exposed with numerous instances of causative structures. The methodology for teaching causative structures was almost the same for the two groups. In fact, causative structures were not explicitly taught in either groups and students just read the materials followed by participating in a discussion of the topic and story of the texts. The only difference was that input flooding group had 10 extra texts to be read at home and to be discussed in the following sessions before reading and discussing the other 10 texts in classroom. In each session, one text was read and discussed in input enhancement group and in input flooding group students had one more discussion of the text they had read at home. In the control group, students just received the same materials used in the input enhancement group but with textual enhancement of any types. Students in control group also followed the same procedure of reading the texts and discussing the topics and stories. After 10 sessions of treatments, students sat for the test of causative structure as posttest, so that any improvement in developing causative structure could be traced and analyzed.

4. RESULTS

In this section, first the results of analyses showing the homogeneity of students in terms of language proficiency are presented followed by results of analyses for the research
questions. As mentioned earlier, TOEFL was used to check the language proficiency of the students. Table 1 presents the descriptive statistics of the groups of students after taking TOEFL.

Table 1: Descriptive Statistics of the Groups with Regard to TOEFL Scores

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Kolmogorov-Smirnov Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>33</td>
<td>41.8485</td>
<td>3.24154</td>
<td>35.00</td>
<td>49.00</td>
<td>.094</td>
<td>33</td>
<td>.200*</td>
</tr>
<tr>
<td>2.00</td>
<td>37</td>
<td>41.2162</td>
<td>4.88839</td>
<td>31.00</td>
<td>51.00</td>
<td>.077</td>
<td>37</td>
<td>.200*</td>
</tr>
<tr>
<td>3.00</td>
<td>27</td>
<td>41.4074</td>
<td>4.55951</td>
<td>33.00</td>
<td>50.00</td>
<td>.094</td>
<td>27</td>
<td>.200*</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>41.4845</td>
<td>4.26251</td>
<td>31.00</td>
<td>51.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A seen in Table 1, mean scores of the groups of the students are almost the same and they are all normally distributed according to the results of Kolmogorov Smirnov test of normality (p>0.05). To further make sure about the equality of the groups in terms of language proficiency, ANOVA was run on the TOEFL scores across the groups.

Table 2: Results of ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>7.196</td>
<td>2</td>
<td>3.598</td>
<td>.195</td>
<td>.823</td>
<td>2.554</td>
<td>2</td>
<td>94</td>
<td>.083</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1737.031</td>
<td>94</td>
<td>18.479</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1744.227</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on statistics of ANOVA, it was found that there was no significant difference between the groups in terms of language proficiency, further approving the homogeneity of the participants in terms of language proficiency.

In order to analyze the data to find the answers to the research questions, it was decided to run ANCOVA. This test could take the initial variances in the knowledge of causative structures of the students into account and produce more accurate picture of the effects of treatments on the performance of the students. However, this test is a robust one and requires certain assumptions to be met before running it. The assumptions include, equal sample sizes, outliers, multicollinearity, normality, homogeneity of variance, linearity, and homogeneity of regression (Tabachnick & Fidell, 2007). In terms of equal sample size, all the groups of the study were approximately equal with regard to number of participants. With respect to outlier, boxplots for the pretest and posttest were consulted and it was found that there were no outliers in the pretest and posttest scores. Figure 1 and 2 show the boxplots for pretest and posttest scores respectively.
As seen in Figures 1 and 2, no cases were indicated as outlier which is a demonstration of meeting outlier assumption. As for the assumption of linearity and homogeneity of regression, scatterplot of the scores was consulted. Figure 3 shows the scatterplot of the pretest and posttest across the groups of the study.
Based on the analysis of the scatterplot, it was found that all the pretest and posttest scores had linear relationship. In addition, all the linear lines had similar slopes starting at lower left corner and raising to the top right corner. Accordingly, the two assumptions of linearity and homogeneity of regression were also met. Regarding multicollinearity, since the analysis contains only one covariate (pretest) it automatically removes any concerns regarding multicollinearity. Finally, Levene’s test of equality of variances (see Table 3) was checked which indicated that variances were equal across the groups ($F=1.46, p>0.05$).

<table>
<thead>
<tr>
<th>Table 3: Results of Levene’s Test of Equality of Error Variances</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>1.469</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Pretest + Groups

After establishing that data of the study could meet the assumptions of ANCOVA, ANCOVA was run on the scores obtained after administering test of causative structures. Table 4 presents the descriptive statistics and Table 5 statistics related to ANCOVA.
Table 4: Descriptive Statistics of the Groups Regarding Pretest and Posttest Scores

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Enhancement</td>
<td>33</td>
<td>15.7879</td>
<td>2.75860</td>
<td>.48021</td>
<td>10.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Input Flooding</td>
<td>37</td>
<td>15.3784</td>
<td>4.01630</td>
<td>.66027</td>
<td>7.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Control</td>
<td>27</td>
<td>14.5185</td>
<td>2.70854</td>
<td>.52126</td>
<td>9.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>15.2784</td>
<td>3.29059</td>
<td>.33411</td>
<td>7.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Posttest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Enhancement</td>
<td>33</td>
<td>21.3939</td>
<td>2.78320</td>
<td>.48449</td>
<td>16.00</td>
<td>27.00</td>
</tr>
<tr>
<td>Input Flooding</td>
<td>37</td>
<td>19.6757</td>
<td>3.80828</td>
<td>.62608</td>
<td>12.00</td>
<td>28.00</td>
</tr>
<tr>
<td>Control</td>
<td>27</td>
<td>13.9259</td>
<td>3.23355</td>
<td>.62230</td>
<td>9.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>18.6598</td>
<td>4.48583</td>
<td>.45547</td>
<td>9.00</td>
<td>28.00</td>
</tr>
</tbody>
</table>

A quick look at the descriptive statistics shows that in pretest, the three groups had similar scores while some differences are observed in the posttest scores.

Table 5: Tests of Between-Subjects Effects (ANCOVA)

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>1328.707a</td>
<td>3</td>
<td>442.902</td>
<td>68.301</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>289.622</td>
<td>1</td>
<td>289.622</td>
<td>44.663</td>
<td>.000</td>
</tr>
<tr>
<td>Pretest</td>
<td>438.773</td>
<td>1</td>
<td>438.773</td>
<td>67.664</td>
<td>.000</td>
</tr>
<tr>
<td>Groups</td>
<td>690.989</td>
<td>2</td>
<td>345.495</td>
<td>53.279</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>603.066</td>
<td>93</td>
<td>6.485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35706.000</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1931.773</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .688 (Adjusted R Squared = .678)

According to the results of ANCOVA, there was a significant difference between the groups (F=53.27, p≤0.05) which suggests that somewhere between the groups there existed some differences. To locate the exact place of difference between the groups, pairwise comparison using Bonferroni adjustment method was conducted.
Table 6: Results of Pairwise Comparisons

<table>
<thead>
<tr>
<th>(I) Groups</th>
<th>(J) Groups</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.(^b)</th>
<th>95% Confidence Interval for Difference(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Input Enhancement</td>
<td>Input Flooding</td>
<td>1.449</td>
<td>.611</td>
<td>.059</td>
<td>-.040</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6.633*</td>
<td>.669</td>
<td>.000</td>
<td>5.003</td>
</tr>
<tr>
<td>Input Flooding</td>
<td>Input Enhancement</td>
<td>-1.449</td>
<td>.611</td>
<td>.059</td>
<td>-2.938</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>5.184*</td>
<td>.648</td>
<td>.000</td>
<td>3.604</td>
</tr>
<tr>
<td>Control</td>
<td>Input Enhancement</td>
<td>-6.633*</td>
<td>.669</td>
<td>.000</td>
<td>-8.263</td>
</tr>
<tr>
<td></td>
<td>Input Flooding</td>
<td>-5.184*</td>
<td>.648</td>
<td>.000</td>
<td>-6.765</td>
</tr>
</tbody>
</table>

Based on estimated marginal means

\(^*\). The mean difference is significant at the .05 level.

\(^b\). Adjustment for multiple comparisons: Bonferroni.

Based on the output of pairwise comparisons, there was a significant difference between input enhancement group and control group (p=0.00) and also between input flooding and control group (p=0.00) while no significant difference was observed between input enhancement and input flooding groups (p=0.059). The results suggest that both input enhancement and input flooding were equally effective on learning causative structures by Iranian EFL learners.

5. DISCUSSION AND CONCLUSION

The purpose of the study was to explore the effects of input flooding and input enhancement on learning causative structures by Iranian EFL learners. Input flooding was operationalized through exposing students with numerous instances of causative structures and input enhancement was operationalized through making the causative structures salient by highlighting the causative structure in texts using such techniques as underlining, boldfacing, etc. Participants of the study were male and female language learners at intermediate level of language proficiency at a private institute in Tehran. The experimentation was conducted employing one control group and a pretest posttest design. The statistical analyses were performed by running the robust method of ANCOVA which showed that input enhancement and input flooding were effective on learning causative structure by Iranian EFL learners. In addition, it was demonstrated that input enhancement and input flooding had equal effect on learning of causative structure and no significant difference was found between the effects of either of them on the causative structure test scores.

Various explanations can be put forward for justifying the positive effects of input enhancement and input flooding on learning of causative structure. First of all, literature is replete with the positive effects of input enhancement and input flooding in various aspect of

Apart from the empirical studies supporting the results of the study, theoretical arguments are also in line with the results of the study. The mechanism of input flooding and input enhancement is attention drawing either through more exposure as is the case in input flooding or through making the target structures salient as is the case in input enhancement. “Attention and noticing” has been a common commonplace in ELT literature and has always been an issue to raise students’ attention and make them aware of the learning targets. Noticing hypothesis postulates that input does not turn into intake unless language learners are conscience of what they are learning and attending to the target structures (Schmidt, 1990, 2001). With regard to exposure, which was the defining criteria in input flooding, there are numerous studies in the area of vocabulary learning that point to the effectiveness of increased exposure to learning vocabulary (e.g., Horst et al. 1998; Rott, 1999; Saragi et al. 1978).

Based on the results of this study and related discussion, it can be concluded that input enhancement and input flooding are effective methods for teaching causative structures and also that they have the potential for teaching other components of language such as vocabulary, grammar, phrasal verbs, etc. The current study not only contributes to pedagogical issues but also contributes to the credence of the role of attention and noticing previously being highlighted by Long and Robinson (1998), Wong (2003), and Schmidt (1990, 2001). Having said that, it is concluded that more novel methods for raising attention and increasing awareness needs to be devised, researched, and reported. This would certainly contribute to the enrichment of literature on attention and language learning.

REFERENCES

Afarz & Ebrahimi

African Causative and Anti-Causative Verb Alternations. English Linguistics Research, 1(2), 25-34.

Rikhtegar, O., & Gholami, J. (2015). The Effects of Pre-versus Post-Presentation Input Flooding via Reading on the Young Iranian EFL Learners’ Acquisition of Simple Past Tense. *English Language Teaching*, 8(3), 80-88.

